Cleanability and Antimicrobial Efficacy of a Titanium Dioxide Coating

Robert S. Donofrio, Robin Bechanko, Audra Bildeaux, and Maryann Sanders

NSF International / The Toxicology Group, L.L.C.

Smart Coatings 2005

Presentation Outline

- Brief introduction to NSF International and The Toxicology Group, L.L.C
- Experimental Design
 - Cleanability assessment
 - Antimicrobial efficacy
- Results
- Future Experimentation

NSF Mission

NSF International, an independent, not-for-profit non-governmental organization, is dedicated to being the leading global provider of public health and safety-based risk management solutions while serving the interests of all stakeholders.

NSF Is The Global Leader In Public Health And Safety

- Serving over 4,000 companies and 8,000 plants across
 80 different countries
- Registering over 3,500 quality and environmental systems
- Conducting over 20,000 audits a year
- On-site Laboratories: Microbiology, Chemistry, Engineering

NSF Offers A Multiplicity Of Public Health And Safety-Based Services

A Global Network Of Partners

Recognized By The World Health Organization

- Collaborating Centre for:
 - Water Safety and Treatment
 - Drinking Water Quality Guidelines
 - Recreational Water Safety Guidelines
 - Food Safety
 - Indoor Environment

International Accreditations

U.S.

Canada

The Toxicology Group, LLC.

As a leader in toxicological assessments, evaluations, laboratory testing, and consulting, NSF is addressing clients business and technical needs cost effectively.

Who We Are...

- A Wholly Owned Company of NSF International
- Formed in direct response to client's requests, based on 50 year history of evaluating chemical formulations, performing laboratory analyses, and determining potential toxicological concerns.
- Focus redefined based on need and broad spectrum of technical expertise available in-house.
- Scope of Services includes technology development including due diligence, regulatory guidance, toxicological evaluations, and laboratory services to Industrial, Commercial, and Governmental Sectors.

Project Funding

- Prizmalite Industries, Inc. contracted The Toxicology Group, L.L.C. to perform an independent, third party assessment of their product's (TioxoClean®) ability to "self clean" various organic compounds
- Experimentation occurred in 2004

TioxoClean®

- Aqueous, amorphous, titania, film-former that holds nano particles (as small as 6 nm) of anatase TiO₂ in a stable suspension
- High surface area of titanium dioxide particle
- Rate of photocatalytic oxidation is enhanced by increased surface area
- Antimicrobial mode of action may be the targeting of the cellular membrane by the hydroxyl radicals, thus increasing permeability, disrupting metabolism, waste excretion and membrane stability

Experimental Design

Cleanability – Selection of Dyes

- Four organic soils utilized as the challenge agents
- Red dye #2, Red dye #220, Blue dye #440, and 3 in 1 oil (in order of theoretical ease of cleaning)
- Dyes selected on visualization and potential susceptibility to photocatalytic oxidation
- Dyes were applied to test and control plates in a "cross" manner
 - two 1" x 6" lines

Cleanability – Plate Setup and Exposure

- 6" x 6" glass plates were obtained for the following groups
 - Experimental Group 1 = TioxoClean®
 - Experimental Group 2 = Competitor's TiO₂ product
 - Control Group = No Coating
- All experimentation performed in triplicate
- Three exposure scenarios were examined
 - Artificial Ultraviolet 35 μW/cm² @ 254 nm
 - American Ultraviolet Co. Model CE-15-4BL equipped with a 350 nm blacklight (model 350BL)
 - 12" exposure distance from light source
 - Natural Indoor UV 1 μW/cm² @ 254 nm
 - Natural Outdoor UV 1 mW/cm² @ 254 nm
 - (Fujishima et al, 1999)

Cleanability – Exposure Protocol

- Recorded weight of plates, opacity and dye surface area at the following exposure time points:
 - Time 0, 10 min, 20 min, 40 min, 60 min, and hourly from 2 hr through 16 hr
- Opacity was measured as follows:
 - Used Orbeco-Hellige Color Disc No. 611-11
 - Mean opacity of the triplicate plates was calculated for each treatment group
- Dye surface area was calculated as follows:
 - Individual areas of the two dye lines were calculated and averaged
 - Mean area of the triplicate plates was then calculated for each treatment group

Cleanability Results

Self Cleanability - Artificial UV

Red #220

Blue #440

Red #2

3 in 1 Oil

Exposure Time (minutes)

Self Cleanability - External UV

Self Cleanability - Indoor UV

Effect of Internal Ultraviolet Light on Dye Surface Area - Red #220

Blue #440

Red #2

3 in 1 Oil

Cleanability Study Results

- Removal efficiencies ranked in the following order of greatest to least (easiest to most recalcitrant):
 Red #2 ← Red #220 ← Blue #440 ← 3-in-1 Oil
- TioxoClean® coated plates displayed a greater rate of removal of both Red #2 and Red #220 compared to Product A under each UV light treatment.
- Product A possessed a more efficient cleanability rate when Blue #440 was utilized as the challenge dye.

Cleanability Study Results

• Red #2:

 TioxoClean® coating under indoor UV conditions yielded the highest rate of cleanability (0.172 cm²/min), followed by outdoor UV (0.127 cm²/min) and artificial UV (0.048 cm²/min).

• Red #220:

 TioxoClean® coating under artificial UV conditions yielded the highest rate of cleanability (0.049 cm²/min), followed by outdoor UV (0.035 cm²/min) and indoor UV (0.012 cm²/min).

• For Blue #440:

 Product A coating proved more effective than the TioxoClean® coating in both outdoor and indoor UV conditions (0.021 and 0.022 cm²/min, respectively).

Cleanability Study Conclusions

- 3-in-1 Oil:
 - No significant difference between the removal efficiencies for either photocatalytic coating under both the outdoor and indoor UV conditions.
 - Both treatments did display cleanability rates that were slightly enhanced when compared to the negative control group.

Antimicrobial Efficacy

- S. aureus image http://www.iuk.edu/faculty/cchauret/Microphotographs.htm
- E. coli image http://www.ars.usda.gov/isi/index.htm
- MS2 coliphage image http://www.ncbi.nlm.nih.gov/ICTVdb/WIntkey/Images/089-30.htm

Organism Description

- Escherichia coli
 - Gram negative bacterium (1 x 3 μm)
 - Member of coliform group enteric, lactose fermenting bacteria, facultative anaerobe
 - Structure LPS, Outer membrane
 - Endotoxin production
 - Flagellated (motile)
 - Infectious dose varies by strain
 - Route of infection oral

Organism Description

- Staphylococcus aureus
 - Gram positive bacterium (1 µm)
 - Cluster forming
 - Thick peptidoglycan layer in cell wall
 - Enterotoxin production (staphyloenterotoxemia)
 at cell level of 10⁵ CFU/mL (1.0 ug of toxin)
 - Non-motile
 - Route of infection oral

Organism Description

- MS2 Coliphage
 - RNA virus; 27 nm in diameter
 - Icosahedral shape
 - Genus of the family Leviviradae
 - Surrogate for polio and rotavirus in EPA Water Purifier Guide standard
 - Used as challenge organism for ANSI/NSF
 Standard 55 "Ultraviolet Microbiological Water
 Treatment Systems"
 - E. coli ATCC 15597 is bacterial host

- JIS Z2801:2000
- Organisms utilized:
 - Staphylococcus aureus ATCC 6538
 - Escherichia coli ATCC 8739
 - MS2 Coliphage ATCC 15597
- Bacteria were pre-enriched for 24 hr on TSA slants; harvested and washed via centrifugation and stock density was estimated using Acridine Orange Direct Counting
- Target challenge concentration 1 x 10⁴ cfu(pfu)/mL (minimum 1 x 10³ cfu(pfu)/mL) added to plates

- Prior to inoculation, plates were sterilized via immersion in 70% ethanol
- Sterile foil (40 x 40 mm) utilized to temporarily cover amended challenge organism and disperse the culture uniformly across plate surface; foil was removed 60 seconds after application
- Exposure scenarios (performed at RT ~ 22°C)
 - Artificial UV light same conditions and UV light source as cleanability studies
 - Natural indoor light
- Exposure duration = 1 hour

- Exposures performed in triplicate
- Following exposures, plates were aseptically transferred to stomacher bags containing 10 mL of sterile phosphate buffered water and organisms were eluted
- For the bacterial challenges, eluent suspensions were pour plated with SPCA and incubated for 24 hr at 35°C
- For the phage challenge, eluent suspensions were processed via the top agar overlay method and incubated for 24 hr at 35°C
- Plates containing between 25 and 250 colonies/plaques were enumerated

- The following experimental coatings were evaluated:
 - TioxoClean® coated
 - TioxoClean® coated + 0.1% Nickel
 - Competitor coated
- 6" x 6" plates were utilized

Efficacy Results

Effectiveness Against *E. coli* ATCC 8739 After 1 Hour UV Exposure

Coating Type	Log Reduction (Indoor)	Log Reduction (Artificial)	Percent Reduction (Indoor)	Percent Reduction (Artificial)
Competitor	0.00	0.08	0.00%	17.65%
TioxoClean®	0.68	3.57	78.95%	99.97%
TioxoClean® + 0.1% Ni	0.38	3.40	58.54%	99.96%

Effectiveness Against *S. aureus* ATCC 6538 After 1 Hour UV Exposure

Coating Type	Log Reduction (Indoor)	Log Reduction (Artificial)	Percent Reduction (Indoor)	Percent Reduction (Artificial)
Competitor	0.0	0.0	0.00%	0.00%
TioxoClean®	0.51	2.38	69.23%	99.51%
TioxoClean® + 0.1% Ni	1.11	2.81	92.31%	99.85%

Effectiveness Against MS2 Coliphage ATCC 15597 After 1 Hour UV Exposure

Coating Type	Log Reduction	Log Reduction	Percent Reduction	Percent Reduction
	(Indoor)	(Artificial)	(Indoor)	(Artificial)
Competitor	1.83	0.70	98.51%	80.17%
TioxoClean®	1.05	0.81	91.02%	84.43%
TioxoClean® + 0.1% Ni	3.40	1.59	99.96%	97.44%

Efficacy Study Conclusions

- TioxoClean® is more effective against the gram negative and gram positive surrogates than Product A
- *E. coli* is more susceptible to photocatalytic oxidation kill compared to *S. aureus*
- Addition of 0.1% Ni enhances kill of gram positive surrogate
- Effect of 0.1% Ni on virus inactivation needs to be investigated further

Future Experimentation

- Antibacterial properties
 - Foodborne pathogens
 - i.e. Listeria, Salmonella, Campylobacter, E. coli 0157:H7
- Antifungal properties
 - Hospital environments
 - i.e. Candida, Trichophyton
 - Environmental / Residential
 - i.e. Aspergillus, Penicillium, Stachybotrys
- Antiviral properties
 - Hospital environments
 - i.e. HIV, Herpes, Hepatitis
 - Environmental
 - i.e. Norovirus, West Nile, Avian Flu, Coronavirus

Future Experimentation

- Investigate affect of increased microbial load
- Exposure time variation on existing studies
- Longevity analysis
- Application studies
 - Water disinfection
 - Direct food contact surfaces
 - Air abatement systems

Live safer.™