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Nanosized Titanium and Zinc Oxides: A
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Abstract

Nanotechnology contributes towards a more effective eradication of pathogens that have emerged in hospitals,
veterinary clinics, and food processing plants and that are resistant to traditional drugs or disinfectants. Since new
methods of pathogens eradication must be invented and implemented, nanotechnology seems to have become
the response to that acute need. A remarkable achievement in this field of science was the creation of self-
disinfecting surfaces that base on advanced oxidation processes (AOPs). Thus, the phenomenon of photocatalysis
was practically applied. Among the AOPs that have been most studied in respect of their ability to eradicate
viruses, prions, bacteria, yeasts, and molds, there are the processes of TiO2/UV and ZnO/UV. Titanium dioxide (TiO2)
and zinc oxide (ZnO) act as photocatalysts, after they have been powdered to nanoparticles. Ultraviolet (UV)
radiation is an agent that determines their excitation. Methods using photocatalytic properties of nanosized TiO2

and ZnO prove to be highly efficient in inactivation of infectious agents. Therefore, they are being applied on a
growing scale. AOP-based disinfection is regarded as a very promising tool that might help overcome problems in
food hygiene and public health protection. The susceptibility of infectious agents to photocatalylic processes can
be generally arranged in the following order: viruses > prions > Gram-negative bacteria > Gram-positive bacteria >
yeasts > molds.

Keywords: Nanotechnology; Nanoparticles; Photocatalysis; Titanium dioxide; Zinc oxide; Reactive oxygen species;
Infectious agents
Review
Introduction
Some metal oxides powdered to nanoparticles (NPs)
(1 < φ ≤ 100 nm) have been attracting much interest
among scientists representing various fields of science.
The main reason for this ever growing interest pre-
sents photocatalytic properties that those compounds
exhibit. Photocatalytic properties of titanium dioxide
(TiO2) were first reported in the 1970s [1] and later
confirmed in a number of experiments [2–5]. At the
end of the twentieth century, the studies that were
going on in various research centers discovered that
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also other metal oxides, e.g., zinc oxide (ZnO) [6–10],
after they have been powdered to the NP form, ex-
hibit formerly undisplayed photocatalytic properties.
Due to those newly discovered characteristics, TiO2

and ZnO in the NP form have found many new ap-
plications, e.g., as ingredients of photocatalytic layers
covering various work surfaces [11]. The so-coated
surfaces gain self-disinfecting and self-cleaning abil-
ities [12, 13]. It is a result of advanced oxidation pro-
cesses (AOPs) initiated by the ultraviolet (UV)
radiation [14]. On surfaces coated by a thin film of photo-
catalyst, the inactivation of infectious agents [15, 16] and
the mineralization of organic matter [17, 18] take place.
Due to their virucidal [19, 20], bactericidal [21, 22] and
fungicidal [23, 24] properties, photocatalytic layers are in-
creasingly applied to coat surfaces in miscellaneous
is distributed under the terms of the Creative Commons Attribution 4.0
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premises, such as farms, abattoirs, production halls, hospi-
tals, and laboratories. The usefulness of photocatalysis has
also been proven in water treatment [25], purification of
drinking water [26], and air disinfection [27]. The re-
searchers presume that the introduction of photocatalytic
surfaces in the food industry, animal production, and
health-care facilities will also be beneficial, as it will help
prevent food poisonings and food contaminations, con-
tribute towards the animal welfare, and improve the effi-
ciency of pathogen eradication [28–30].

Photocatalytic Properties of Titanium and Zinc Oxides
The discovery in the second half of the twentieth
century that nanosized titanium dioxide (nano-TiO2)
exhibits catalytic properties if exposed to UV radi-
ation evoked a great interest in this substance [1] that
has been growing ever since [14, 31]. The photocata-
lytic properties of semiconductors, to which nanosized
metal oxides, such as TiO2 and ZnO, belong, result
from their specific energetic structure. Their low-
energy valence band (VB) is filled with electrons,
and their high-energy conduction band (CB) is elec-
tron free. The energy difference (ΔE) between those
bands, defined as band gap, equals the amount of
energy necessary to excite an electron from VB to
CB. In case of three polymorphic TiO2 forms, i.e.,
brookite, rutile, and anatase, as well as for ZnO, the
width of the energy gap amounts to 2.96, 3.02, 3.20,
and 3.37 eV, respectively. It is the equivalent of the
electromagnetic radiation photon energy with a wave-
length of λ < 400 nm. The photocatalytic properties of
TiO2 and ZnO in their NP form are applied in a
Fig. 1 Mechanism of reactive oxygen species (ROS) generation on the surf
ROS on infectious agents (b). On the surface of TiO2 and ZnO nanoparticle
ROS have the ability to inactivate infectious agents susceptibility of which
prions > Gram(−) bacteria > Gram(+) bacteria > yeasts > molds (b). Subseq
CO2 and H2O (b)
number of biological experiments, in which the UV radi-
ation is used with the purpose to excite the photocatalysts.
The UV radiation is commonly applied in its near-
ultraviolet range (UV-A, λ = 315–400 nm) [32–37].
The result of the semiconducting metal oxides irradi-

ation is the excitation of an electron (e−) from VB to CB,
whereby a positively charged electron hole (h+) emerges.
Therefore, a specific “hole-electron” pair (h+ + e−), called
exciton, is generated [38, 39] (Fig. 1).
The electron holes (h+) induce the oxidation processes

while electrons (e−) condition the reduction processes.
The electron holes (h+) react with water molecules
(H2O) or hydroxide ions (OH−), forming hydrogen per-
oxide molecules (H2O2) or hydroxyl radicals (•OH).
Electrons (e−) react with molecular oxygen (O2), forming
superoxide anion radicals (•O2

−). Therefore, various
forms of reactive oxygen species (ROS) are created:
H2O2,

•OH, and •O2
− [38–40] (Fig. 1).

ROS emerging on the photocatalytic surfaces first in-
activate infectious agents such as viruses, prions, bac-
teria, yeasts, and molds. Then, ROS oxidize the dead
microbial cells [23, 24, 41], along with organic matter
[18, 42], to CO2 and H2O. Due to photocatalytic proper-
ties, TiO2 and ZnO are applied, after powdering to NPs,
in AOPs- and UV-radiation-based methods of pathogens
inactivation and organic pollutants decomposition [43].
The susceptibility of infectious agents to photocatalylic
processes may by miscellaneously arranged, depending
upon particular studies presented by various authors.
The most representative seems to be in the following
order: viruses > prions > Gram-negative bacteria >
Gram-positive bacteria > yeasts > molds (Fig. 1).
ace of nanoparticles of titanium or zinc oxides (a) and the effects of
s, exposed to UV radiation, ROS (•O2

−, •OH, and H2O2) are formed (a).
to oxidative damages can be arranged in the following order: viruses >
uently, organic matter and dead microbial cells are oxidized by ROS to
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Antiviral and Antiprion Activity of Nanosized Titanium
Dioxide
Viruses Inactivation
There are studies proving that the TiO2/UV process
where titanium dioxide (TiO2), after it has been pow-
dered to nanoparticles, performs as photocatalyst, and
ultraviolet (UV) radiation is an agent generating reactive
oxygen species, is an effective tool in the eradication of
many viruses from a number of taxonomy groups (ac-
cording to the Baltimore system of virus classification)
[44, 45]. Among viruses inactivated by the TiO2/UV
process, there are: icosahedral enveloped viruses from
the dsDNA group, e.g., herpes simplex virus type 1
(HSV-1) [42, 46], and from the dsDNA-RT group, e.g.,
hepatitis B virus (HBV) [47]; icosahedral non-enveloped
viruses from the dsRNA group, e.g., rotavirus A (RV-A)
[48], and from the (+)ssRNA group, e.g., poliovirus (PV)
[49]; helical enveloped viruses from the (−)ssRNA group,
e.g., avian influenza H5N2 virus (A/H5N2) [43]; as well
as icosahedral phages of Escherichia coli, such as MS2
from the (+)ssRNA group [35, 50, 51] and T4 from the
dsDNA group [52, 53]. In the past, air-borne virus dis-
eases appeared to pose a serious health risk for large hu-
man populations. As an example, severe acute
respiratory syndrome (SARS) can be quoted. It was de-
tected in China in 2003, for the first time. Another ex-
ample is the influenza epidemic that spread over the
whole world in 2009, growing to nearly pandemic di-
mensions. Nonspecific character of AOPs gives rise to
assume that the TiO2/UV process could efficiently re-
duce the dissemination of many viruses, e.g., measles,
mumps, rubella, or smallpox. Some authors, like Han
et al. [54], believe the TiO2/UV process can be an effi-
cient tool to reduce the dissemination of the SARS virus,
a helical enveloped virus from the (+)ssRNA group.
Nakano et al. [55] showed that on the surface covered
by a thin layer of nano-TiO2, a complete inactivation of
influenza virus took place within a short period (ap-
proximately 30 min) of the TiO2/UV process. Those re-
sults have also been confirmed in the studies of other
authors [56]. Despite the common opinion of the rela-
tively high virus susceptibility to AOPs (Fig. 1), Josset
et al. [57] and Zhao et al. [58] suggest a higher (com-
pared to bacteria) resistance of viruses to photocatalytic
processes.
The virus inactivation mechanism by AOPs is still in-

sufficiently examined [59]. Kashige et al. [60] suggest the
TiO2/UV-based inactivation of the phage PL-1 that in-
fects Lactobacillus casei should be attributed mainly to
the damages of capsid proteins inflicted by hydroxyl rad-
icals and superoxide anion radicals. As the authors re-
port, the fragmentation of the viral nucleic acid follows.
The same opinion with respect to the MS2 phage infect-
ing E. coli represents Kim et al. [61] as well as Sjogren
and Sierka [62]. According to Liga et al. [63, 64], non-
enveloped viruses are more prone to the oxidizing activ-
ity of hydroxyl radicals than enveloped viruses. Their
nucleic material is separated from the external environ-
ment only by a thin layer of capsid. In enveloped viruses,
the nucleocapsid, also called virion, is surrounded by a
plasma membrane that protects the viruses from exter-
nal factors. This envelope is formed of virus-produced
glycoprotein spikes and of a phospholipid bilayer derived
from the host cell and composed by phosphatidyletha-
nolamine (PE). In all herpesviruses, there is a tegument,
a protein cluster, which is located between the envelope
and nucleocapsid [46]. Xu et al. [59] report that the dif-
ferences between the enveloped and non-enveloped vi-
ruses in their susceptibility to photocatalytic processes
result from the number of layers, hence the difference in
the overall thickness, separating the virus nucleic mater-
ial from the external environment, rather than from the
various susceptibilities of the particular layers that sur-
round the nucleic material (Fig. 2).
Not all authors share, however, the above outlined con-

clusions. Nakano et al. [65] report that the non-enveloped
viruses exhibit greater resistance to the destructive activity
of the TiO2/UV process. In their experiments, they exam-
ined the susceptibility of two viruses: an influenza virus
(IFV), a representative of the enveloped viruses group, and
a feline calicivirus (FCV) from the non-enveloped viruses
group. Both viruses were inactivated in a time-dependent
manner. It took for the inactivation of FCV to fall below
the detection limit as much as twice the time as it was
needed in case of IFV. The authors suggest those differ-
ences are attributed to the viral envelope. The products of
peroxidation of the envelope membrane phospholipids
promote the oxidative damages to capsid proteins. As a
consequence, the damages to nucleic acid, hence the virus
inactivation, occur faster.

Prions Inactivation
Hydroxyl radicals formed during the TiO2/UV process
inactivate also protein infectious agents, so-called
prions. Prions belong to the group of pathogens that
exhibit a fairly high resistance to conventional disin-
fection methods. Paspaltsis et al. [66, 67] observed
in vitro the full decomposition of the scrapie prion
protein (PrPSc), a protein causing one of the several
transmissible spongiform encephalopathies (TSEs),
after 60 min of UV-A irradiation in the presence of
0.8 % colloidal nano-TiO2. The researchers also reported
that the decomposition of the cellular prion protein (PrPC),
a protein not inducing any of the TSEs, took place already
after 30 min of the TiO2/UV process. A greater resistance
of PrPSc to oxidative activity of ROS is attributed to al-
leged differences in the protein secondary structure, a rea-
son for the protein’s different physicochemical properties.



Fig. 2 Susceptibility ( ) of layers encircling the nucleic acid in non-enveloped (a) and enveloped (b) viruses to damages induced by hydroxyl radicals

(•OH). Susceptibility of the various layers encircling the viral nucleic acid to oxidative damages is almost identical (plasma membrane ≈ tegument ≈ capsid)
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Paspaltsis et al. [66, 67] stress that the dimensional struc-
ture of PrPSc still remains hypothetical. Due to its insolu-
bility in water, it is impossible, though, to examine PrPSc

using nuclear magnetic resonance (NMR) spectroscopy.
Prion transmission, hence prion-induced diseases,
constitutes a serious risk for the health of people and
animals alike. The main source of infection is the
contamination of surgeon tools by prions. The
implementation of the TiO2/UV-based disinfection of
medical tools and devices in the human and veterinary
medicine might help reduce the number of TSEs
infections on the iatrogenic pathway.

Antibacterial Activity of Nanosized Titanium and Zinc
Oxides
Contemporary human and veterinary medicine have
found measures to prevent and heal many bacterial dis-
eases, using traditional methods, such as vaccination and
antibiotic therapies. Nonetheless, numerous microorgan-
isms present in clinical and non-clinical environments
have recently become much more resistant to drugs
[68]. Currently, the main problem in hospitals and veter-
inary clinics is the presence and infestation of highly
virulent and antibiotic-resistant pathogens. Among them,
there are Gram(−) bacteria, e.g., carbapenem-resistant Aci-
netobacter baumanii (CRAB) [69], carbapenem-resistant
Klebsiella pneumonia (CRKP) [70], carbapenem-resistant
Pseudomonas aeruginosa (CRPA) [71], as well as Gram(+)
bacteria, e.g., vancomycin-resistant enterococci (VRE) [72],
methicillin-resistant Staphylococcus aureus (MRSA) [73],
vancomycin-resistant S. aureus (VRSA) [74], methicillin-
resistant Staphylococcus epidermidis (MRSE) [73], or
penicillin-resistant Streptococcus pneumoniae (PRSP) [75].
Thus, the search for effective methods of pathogen eradica-
tion presents a crucial challenge for many research centers
in the world [21, 22, 76]. One of the latest achievements in
this field has been the application of photocatalysis [77].

Titanium Dioxide
Nano-TiO2 exhibits not only virucidal properties. The
TiO2/UV process is a tool for an efficient bacteria eradi-
cation, too [77–83]. Its antibacterial activity depends
upon such factors as light intensity [2], concentration and
diameter of photocatalyst particles [10, 84], temperature
of environment [3], chemical composition of the base
[85, 86], and sensitivity of microorganism species [87, 88].
According to Ferin and Oberdörster [89] as well as Hwang
et al. [90], the highest photocatalytic activity, hence the
strongest bactericidal properties are shown by two poly-
morphic forms of nano-TiO2, anatase, and rutile, com-
bined in the proportion 80 and 20 %, respectively. This
composition is widely used in experiments with bacteri-
cidal properties of nano-TiO2 and is commonly known
under the trade name P-25 [91]. Some literature reports
that both forms (anatase and rutile) are equally harmful to
bacteria [10]. However, most authors report that anatase
shows stronger catalytic properties than rutile [92]. Vari-
ous studies examined the optimal concentration of P-25
in aqueous solutions for the purpose of bacteria eradica-
tion. Liou and Chang [93] as well as Pigeot-Rémy et al.
[94] prove that, irrespectively of the initial density of E.
coli cells (102–108 CFU mL−1), the highest bacteria inacti-
vation rate was observed at 0.1 % P-25. Other authors
concentrated on the influence of the diameter of nano-
TiO2 particles on its bactericidal properties. Salih and Pil-
lay [95], as well as many other scientists [96, 97], came to
the conclusion that nano-TiO2 with φ < 20 nm has stron-
ger bactericidal properties than its less powdered form. It
can be attributed to the fact that particles with φ < 20 nm
are able to penetrate the damaged cell envelope (cell wall



Bogdan et al. Nanoscale Research Letters  (2015) 10:309 Page 5 of 15
and plasma membrane) and infiltrate the cytosol
while particles with φ = 20–80 nm are not able to
overcome the barrier of a cell envelope. The nano-
TiO2 particles’ antibacterial activity increases as their
size decreases (surface-area-to-volume ratio). The
smaller the NP size, the bigger the surface area of the
nano-TiO2 particles, hence the number of ROS. Other
studies point out that environmental factors affect the
efficiency of the TiO2/UV process. Tong et al. [86]
indicate that various factors, including organic pollut-
ants, may cause a decrease of bacteria inactivation
rate, even by 40 %. Results of other experiments
suggest the underlying factor to weaken the nano-
TiO2 photocatalytic effect might also be the high
density of microorganism cells (in excess of
108 CFU mL−1) [2, 85, 98].
The studies on the susceptibility of bacteria to the

TiO2/UV process date back to 1985 when Matsunaga
et al. [4] for the first time reported that a 120-min ex-
position of water polluted by E. coli and Lactobacillus
acidophilus to the UV-A radiation resulted in an almost
complete destruction of the bacteria. This experiment
used photocatalytic properties of the nanosized titanium
dioxide loaded by platinum (nano-TiO2/Pt). The NPs’
addition of some chemical elements, both metals (e.g.,
Ag, Au, and Pt) and non-metals (e.g., C, N, and P), as
well as their oxides (e.g., WO3 and CrO3), results in the
broadening of the electromagnetic radiation spectrum
capable of exciting electrons in a semiconductor, e.g.,
nano-TiO2, and thereby enhances its effectiveness as a
photocatalyst [5, 99]. In the inactivation of bacteria by
the TiO2/UV process, ROS plays a crucial role. The
strongest bactericidal activity among the ROS is attrib-
uted to hydroxyl radicals [14, 18, 36, 38, 100]. Cho et al.
[101] claim there is a linear correlation between the E.
coli inactivation rate and the hydroxyl radical concentra-
tion in bacteria cells. Bekbölet and Araz [102] as well as
Salih [103] maintain that high oxidation potential and
nonspecific reactivity of hydroxyl radicals are the main
factors of their bactericidal properties. Hydroxyl radicals
(•OH) are short living, particularly unstable and react
rapidly with most biological molecules [40]. They can
penetrate the cell wall, oxidize membrane fatty acids, in-
duce lipid peroxidation, oxidize proteins, and damage
DNA. Proteins are affected by tyrosine hydroxylation,
oxidation of methionine or cysteine, as well as by the
carbonyl group formation on side-chain amino acids
[104, 105]. Similar effects are induced by hydrogen per-
oxide molecules (H2O2) [36, 106, 107] (Fig. 3).
During the oxidation of the bacteria cell envelope phos-

pholipids, carbonyl compounds such as aldehydes, ketones,
and carboxylic acids are formed. Some of them exhibit
properties that are potentially toxic to bacteria [16, 108].
Liu et al. [105], as well as other authors [109, 110], observed
at the model of E. coli that various layers of the bacteria cell
envelope are characterized by a different susceptibilities to
hydroxyl radicals generated as a result of photocatalytic
processes, e.g., the TiO2/UV process. According to those
authors, the highest resistance was shown by peptidoglycan
(PG), also called murein. In Gram-positive bacteria, the PG
provides for an efficient physical barrier that prevents from
the entry of molecules into the cell. Much more susceptible
to oxidative damages was PE that builds a phospholipid bi-
layer of plasma membrane, while lipopolysaccharides (LPS),
present exclusively in outer membrane of Gram-negative
bacteria cell wall, submitted particularly easy to the oxida-
tive damages. Porins going across the outer membrane fa-
cilitate small molecules to enter the cells. In bacteria
exposed to the TiO2/UV process, significant morphological
changes in the cell structure were observed, using the scan-
ning electron microscopy (SEM), transmission elec-
tron microscopy (TEM), and atomic force microscopy
(AFM) [111, 112]. Various cell damages were notice-
able, e.g., plasmolysis, intracellular vacuoles ghost, cell
debris, and nucleoid condensation [113, 114]. In some
cases, a separation of the plasma membrane from the
PG layer occurred. As a general rule, the bacteria in-
activation progressed with no visible PG degradation,
neither with Gram-negative nor with Gram-positive
bacteria [115]. Hydroxyl radicals (•OH), generated
during the TiO2/UV process, infiltrate the cell enve-
lope, subsequently disrupting nucleic acids. They des-
troy phosphodiester linkages, induce the formation of
pyrimidine dimers [32, 100, 116, 117], or lead to a
complete oxidation of purine and pyrimidine bases to
CO2, H2O, and NH3 [17, 18]. Hydroxyl radicals can
also damage the DNA of bacterial plasmid [118] and
induce the dimerization of coenzyme A (CoA) parti-
cles [119]. The CoA is the intracellular carrier of acyl
groups and electrons. Its depletion disrupts the
process of oxidative pyruvate decarboxylation and the
Krebs cycle, both important stages of glucose catabol-
ism. The increase in the concentration of the dimeric
CoA inhibits the cell respiration. Imlay et al. [120],
similarly Ndounla et al. [121], emphasize that the for-
mation of bactericidal hydroxyl radicals does not
occur exclusively as a consequence of nano-TiO2 ex-
citation by UV radiation. As they report, a simultan-
eous process is the Fenton reaction. There, the
formation of hydroxyl radicals (•OH) is actively en-
hanced by Fe2+ ions and hydrogen peroxide molecules
(H2O2) (see Eq. 1).

Fe2þ þ H2O2→ Fe3þþ•OH þ OH− ð1Þ

Superoxide anion radicals (•O2
−) cannot penetrate the

cell envelope since they are negatively charged. However,



Fig. 3 Bacteria cell structures most easily damaged by reactive oxygen species (ROS). Among the bacteria cell structures, cell envelope (cell wall
and plasma membrane) as well as nucleoid are most affected by ROS-induced damages. Hydroxyl radicals (•OH) and hydrogen peroxide
molecules (H2O2) have the ability to penetrate the bacteria cell envelope, whereas superoxide anion radicals (•O2

−) do not exhibit such ability

Bogdan et al. Nanoscale Research Letters  (2015) 10:309 Page 6 of 15
contrary to hydroxyl radicals, they show a relatively long
living period [36] (Fig. 3).
Bacteria, similar to cells of eukaryotic organisms, have

also developed their own antioxidant enzyme systems,
i.e., mechanisms protecting them from ROS. The princi-
pal defense mode is a system of three enzymes that are
responsible for detoxification of ROS. These are: super-
oxide dismutase (SOD; EC 1.15.1.1), a protein catalyzing
the disproportionation reaction of two superoxide anion
radical particles to hydrogen peroxide and molecular
oxygen and catalase (CAT; EC 1.11.1.6) and glutathione
peroxidase (GPX; EC 1.11.1.9), enzymes decomposing
hydrogen peroxide into water and molecular oxygen
[122, 123]. The crucial role in limiting the negative ef-
fects of oxidative stress plays also as antioxidants such
as lipoic acid (LA) and ubiquinone (CoQ10). LA is con-
sidered to be an important endogenous free radical scav-
enger as it neutralizes free radicals in lipid and aqueous
domains alike. CoQ10 performs also as an energy carrier.
Kim et al. [124] and Ojima et al. [125] confirmed in their
experiments with E. coli that in case the ROS concentra-
tion is too high for the defense systems to repair, numer-
ous oxidative damages of the nucleoid and cell envelope
phospholipids domain occur. The products of polyunsat-
urated fatty acids (PUFAs) peroxidation, such as malon-
dialdehyde (MDA), can form adducts with nucleic acids
and proteins thus, leading to alterations in their func-
tioning. The DNA damages result in various mutations,
while the protein injuries cause enzymes inhibition, de-
naturation and protein degradation. As those alterations
become excessive, they may eventually lead to the cell
death. Simon-Deckers et al. [10] studied other Gram-
negative bacteria, Cupriavidus metallidurans, and stated
that the cell death is, on the one part, a result of the
amount of ROS and the extent of the damages caused
by them; and, on the other part, a result of the ability to
keep the cell envelope integrity by the intracellular re-
pair systems.
Sunada et al. [126] represent the opinion that the bac-

teria inactivation during the TiO2/UV process takes
place in three steps. At first, oxidative damage of the
outer membrane occurs, causing merely insignificant im-
pairment to bacteria viability. Thereafter, a DNA injury,
the lowering of CoA level, increased permeability of the
plasma membrane and the leakage of the intracellular
components follow. Finally, the microorganisms die.
The differentiation in the bacteria susceptibility to

the TiO2/UV process results from two factors: vari-
ous structure of the cell wall (its complexity and
thickness) and different susceptibilities of the cell
wall compounds to oxidative damages. Bactericidal
effects that the TiO2/UV process has on many mi-
croorganisms have been confirmed. Moderate resist-
ance against oxidative damages was exhibited by the
Gram-negative bacteria, e.g., E. coli [2, 5, 33, 34, 79,
86, 98, 99, 105, 119, 124, 127–133], K. pneumoniae
[134], Salmonella Enteritidis [37, 135], Salmonella
Typhimurium [127], Serratia marcescens [136], Shi-
gella flexnerii [15, 127], Legionella pneumophila
[137], A. baumannii [15, 128, 136], P. aeruginosa
[34, 37, 77, 78, 129, 138, 139], and Vibrio cholerae
[127]. Gram-negative bacteria have a fairly thin cell
wall (2–10 nm) which is formed of two phospholipid
bilayers (outer membrane and plasma membrane),
separated by periplasmic space in which two to three
PG layers are immersed. Murein is a net of long,
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unbranched chains formed of particles of N-acetylglucosa-
mine (GlcNAc) and N-acetylmuramic acid (MurNAc) that
are alternately arranged and linked by β-1,4-glicosidic
bond. The chains are bound by transversal (horizontal and
vertical) oligopeptide bridges. Unlike the plasma mem-
brane, which is formed almost exclusively of PE, the outer
membrane consists of two asymmetrically placed lipid
layers. The inner layer is formed of PE, and the outer layer
of LPS that in pathogens play the role of endotoxins and
are a significant pathogenic agent [105, 108, 110] (Fig. 4).
A greater resistance to the destructive properties of

ROS show Gram-positive bacteria species, e.g., S. aureus
[15, 34, 76, 129, 140], Bacillus anthracis [141–144], Ba-
cillus cereus [145], Bacillus pumilis [146], Bacillus subti-
lis [33, 141], L. acidophilus [4, 147], Lactobacillus
helveticus [130], Clostridium perfringens [148], Entero-
coccus faecalis [149], Enterococcus faecium [34], and Lis-
teria monocytogenes [78, 136, 150, 151]. Gram-positive
bacteria have a relatively thick cell wall (20–80 nm).
Their plasma membrane is formed similarly as in Gram-
negative bacteria and is surrounded by around 40 layers
of PG. Long, polymeric, and sticking over the surface of
cell wall chains of teichoic acids pass across murein.
Lipoteichoic acid (LTA) is rooted in plasma membrane
whereas teichoic acid (TA) is bound to polysaccharide
murein chains (more precisely, to the groups of Mur-
NAc) [108, 110] (Fig. 5).
As Markowska-Szczupak et al. [152] report, the bac-

terial susceptibility to the TiO2/UV process can be
Fig. 4 Susceptibility ( ) of Gram-negative bacteria cell envelope compo

the various compounds of the Gram(−) bacteria cell envelope (cell wall and
order: lipopolysaccharides > phospholipids > peptidoglycan
ordered as follows: E. coli > Gram-negative bacteria
(other than E. coli) > Gram-positive bacteria (other
than Enterococcus sp.) > Enterococcus sp. (Fig. 1). This
sequence is confirmed also by Kühn et al. [34] who
arranged the inactivation effectiveness of four bacteria
species on a surface covered by a thin layer of nano-
TiO2 and exposed to UV-A radiation during 60 min
as follows: E. coli > P. aeruginosa > S. aureus > E.
faecium. The experiments conducted by Hitkova et al.
[153] confirm that Gram-negative bacteria are more
susceptible to the photocatalytic inactivation than Gram-
positive bacteria. The entire reduction of E. coli and P.
aeruginosa, two Gram-negative bacteria representatives,
was achieved within 15 and 25 min, respectively, while it
took 35 min to completely inactivate S. aureus, a Gram-
positive bacteria species. A great number of studies con-
firm the above outlined susceptibility sequence [62, 78, 81,
101, 154–160]. There are, however, authors who report
the opposite order [4, 161–163]. According to them, the
Gram-negative bacteria are more resistant to oxidative
damages. Nakano et al. [65] examined the period needed
to entirely inactivate S. aureus, a Gram-positive bacteria.
It appeared to be four times shorter than that needed to
destroy E. coli and S. marcescens, two Gram-negative bac-
teria species. Kubacka et al. [164] and Wolfrum et al. [24]
reported there was no difference in sensitivity between the
Gram-negative and Gram-positive bacteria.
Numerous studies confirm the high effectiveness of

TiO2/UV process in eradication of methicillin-resistant
unds to damages induced by hydroxyl radicals (•OH). Susceptibility of

plasma membrane) to oxidative damages presents the following



Fig. 5 Susceptibility ( ) of Gram-positive bacteria cell envelope compounds to damages induced by hydroxyl radicals (•OH). Susceptibility of

the various compounds of the Gram(+) bacteria cell envelope (cell wall and plasma membrane) to oxidative damages presents the following
order: phospholipids > peptidoglycan
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S. aureus (MRSA) [73, 165, 166] and of UV-resistant En-
terobacter cloacae [167]. Hydroxyl radicals that are
formed during the TiO2/UV process have high oxidation
potential, and they can also eradicate spores of B.
anthracis and B. cereus [141–143].

Zinc Oxide
The nanosized zinc oxide (nano-ZnO) exhibits strong
bactericidal properties when exposed to the UV radi-
ation. Therefore, the ZnO/UV process presents an-
other example of a tool that provides for an efficient
bacteria eradication. The inactivation is effective for
many species of Gram-negative (e.g., E. coli, L. mono-
cytogenes, S. Enteritidis) and Gram-positive bacteria
(e.g., B. subtilis, S. aureus, Streptococcus pyogenes, E.
fecalis) [6–9, 78, 130, 168–171]. According to some
authors [7, 8, 172, 173], bactericidal effects of nano-
ZnO are directly and inversely proportional to the
concentration and diameter of its particles, respect-
ively. Having used the confocal laser scanning micros-
copy (CLSM), Raghupathi et al. [172] concluded that
the accumulation of nano-ZnO in the cytoplasm or
on the outer membrane might be involved in the
antibacterial activity of nano-ZnO. Yamamoto [8] and
Zhang et al. [9] emphasized that in the inactivation of
bacteria by the ZnO/UV process, the crucial role played
hydroxyl radicals and hydrogen peroxide molecules with
their ability to infiltrate through the cell wall. The studies
of Azam et al. [78] as well as Liu and Yang [130] showed
that PE, the main component of the cell wall of Gram-
negative bacteria, was much easier to penetrate by hy-
droxyl radicals and much more susceptible to oxidative
damages than murein, the main component of the cell
wall of Gram-positive bacteria. Thus, the cell wall of E.
coli (Gram-negative bacteria) was easier to penetrate and
damage by hydroxyl radicals and hydrogen peroxide mole-
cules than the cell wall of S. aureus (Gram-positive bac-
teria) [6, 9, 78, 130]. In their experiments with
Campylobacter jejuni, a Gram-negative bacteria, Xie et al.
[174] observed that this very common food-borne patho-
gen was very sensitive to the ZnO/UV process. The overall
growth impairment rate appears, therefore, clearly higher
in case of Gram-negative bacteria. This conclusion was,
however, not confirmed by Jain et al. [175] and Siddique
at al. [173] who reported that nano-ZnO stronger restricts
the growth of Gram(+) bacteria than Gram(−) bacteria.
Gordon et al. [168] examined the bacteria inactivation

rate by superoxide anion radicals. According to them,
negatively charged superoxide anion radicals did not in-
filtrate through the strongly negatively charged cell wall
of E. coli as easily as through S. aureus cell wall which is
formed mainly of PG, hence exhibits a lower density of
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the negative charge. This characteristic explains, as the
authors say, the higher susceptibility of Gram(+) bacteria
to superoxide anion radicals than that of Gram(−)
bacteria.
As a matter of fact, the results of a great majority

of experiments prove a higher susceptibility of Gram-
negative bacteria (e.g. E. coli) to the ZnO/UV process
than that of Gram-positive bacteria (e.g. S. aureus)
[6, 9, 78, 130]. Such a difference in susceptibility is
attributed to the different chemical composition and
structure of the bacteria cell wall. Gram(−) bacteria
have a much thinner cell wall compared to Gram(+)
bacteria, and the content of PG, a compound rela-
tively resistant to oxidative damages, in their cell wall
is quite low.

Antifungal Activity of Nanosized Titanium and Zinc
Oxides
Fungi play an important role in our everyday life. For
instance, they influence the quality of the air in
rooms. Allergies, asthma, or respiratory tract infec-
tions are just some of a great number of ailments
conditioned by the presence of fungi in closed areas.
Pollutions in buildings are often a factor inducing the
so-called sick building syndrome [176]. Many re-
searchers believe that AOPs taking place on surfaces
covered by a thin layer of photocatalyst, such as
nano-TiO2 or nano-ZnO, might be a tool to effect-
ively restrict the dissemination of yeasts and molds,
just as it is the case with viruses and bacteria harmful
to humans and animals [4, 24, 80–83, 142].

Yeasts Inactivation
Pioneering studies evaluating the effectiveness of the
TiO2/UV process in eradication of yeasts were con-
ducted by Matsunga et al. [4] in 1985. They proved that
the number of inactivated in vitro cells of Saccharomyces
cerevisiae after 240 min of UV-A irradiation increased
from 72 % to nearly 98 % as a result of application of
0.5 % colloidal nano-TiO2. Thabet et al. [177] reported
there was no presence of nano-TiO2 particles in S. cere-
visiae cells despite a long exposition of the pathogen to
the TiO2/UV process, even though of the ROS con-
centration in cytosol increased. Those results suggest
the damages in the cell wall and in the plasma mem-
brane were merely insignificant. Fungicidal properties
of nano-TiO2 have been also confirmed at the ex-
ample of another representative of yeasts, Candida
albicans [23, 80–82, 178, 179]. The growth of this
pathogen was strongly impaired also in the presence
of nano-ZnO [180–183]. According to Gondal et al.
[181], the minimal inhibitory concentration (MIC) of
nano-ZnO against C. albicans is 2.5 mg mL−1, a value
nearly ten times higher than in case of bacteria. In both
yeasts species, S. cerevisiae and C. albicans, vegetative
forms exhibited a significantly lower resistance to AOPs
compared to spores [80]. Lipovsky et al. [184] attribute
the key role in the pathogen cells inactivation to ROS, par-
ticularly to hydroxyl radicals as agents that induce the cell
envelope damages. Results of numerous studies have
shown a lower susceptibility of yeasts to photocatalytic
processes in comparison to bacteria [80–83, 87] (Fig. 1).
Those findings have also been confirmed by the examin-
ation of their cell wall morphology, using the TEM and
the X-ray diffraction (XRD) [183]. This reaction is attrib-
uted to the differences in the cell wall composition be-
tween those microorganisms [185]. Insofar the bacteria
cell wall contains PG, a compound that is highly resistant
to oxidative damages [105, 108, 110], the fungi cell wall
contains instead a compound called chitin, which is even
more resistant to the oxidative ROS activity [23]. Chitin is
an unbranched polysaccharide formed of 100–160 groups
of GlcNAc, linked by β-1,4-glycosidic bonds. In yeasts,
this polysaccharide is present in deeper layers of the cell
wall and amounts to only 1–3 % of its dry matter. The
main component of the yeast cell wall is polysaccharides
composed of D-glucose monomers, called glucans. In re-
spect of their resistance to hydroxyl radicals, glucans only
slightly lag behind chitin. In yeasts, mainly β-glucans are
represented. A moderately branched β-1,3-glucan prevails,
accompanied by much a more branched, less present
β-1,6-glucan. The external layer of the yeasts cell wall
is formed predominantly from mannoproteins, fairly
susceptible to oxidative damages protein-sugar com-
pounds, constituting around 40 % of cell wall dry
matter. Plasma membrane formed mainly from PE
and contiguous with cytosol shows the greatest sus-
ceptibility to oxidative injuries [186, 187] (Fig. 6).

Molds Inactivation
Recent studies prove that nanosized metal oxides, such
as nano-TiO2 or nano-ZnO, can be applied to inactivate
many species of molds (filamentous fungi), e.g., Fusar-
ium oxysporum [83, 188], Aspergillus niger [81, 82, 181,
189], and Penicillium expansum [190, 191].
Chen et al. [192] reported that molds exhibit a lower

resistance to the TiO2/UV process than viruses, bacteria,
or even yeasts (Fig. 1). The scientists conducted an ex-
periment with A. niger, growing on wood covered by a
thin layer of nano-TiO2. It took as much as 12 h to stop
the growth of the A. niger hyphae, using the UV-A radi-
ation. Even then, the fungus spores remained viable. The
long UV-A irradiation period was not able to inactivate
the spores. After the source of UV-A radiation had been
removed, the germination of spores and the growth of
hyphae were noticed. The studies of Yu et al. [189] re-
port that the AOP-based water disinfection was not able,
either, to destroy the spores of A. niger. Despite the



Fig. 6 Susceptibility ( ) of yeasts cell envelope compounds to damages induced by hydroxyl radicals (•OH). Susceptibility of the various

compounds of the yeasts cell envelope (cell wall and plasma membrane) to oxidative damages presents the following order: phospholipids >
glycoproteins > glucans > chitin
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antifungal capability of the TiO2/UV process, the subse-
quent hyphae re-growth indicated that the photocatalytic
disinfection was not sufficient to completely inactivate
A. niger but merely managed to suppress its growth.
In experiments of Sichel et al. [83, 188], the spores of

another representative of molds, F. oxysporum, were
inactivated not sooner than after 10 h of the TiO2/UV
Fig. 7 Susceptibility ( ) of molds cell envelope compounds to damage

compounds of the molds cell envelope (cell wall and plasma membrane) t
glycoproteins > glucans > chitin
process. Similar results in respect of this species ob-
tained Lonnen et al. [80] as well as Mitoraj et al. [81].
The SEM, TEM, AFM, and XRD examination of A. niger
and F. oxysporum cell walls showed that the spores were
rugged and wrinkled. There were, however, no traces of
nano-TiO2 presence in the spores [112]. Filamentous
fungi (particularly their spores) have a fairly high
s induced by hydroxyl radicals (•OH). Susceptibility of the various

o oxidative damages presents the following order: phospholipids >
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resistance also towards the ZnO/UV process [181, 189,
190]. The underlying factor of the high resistance to
photocatalytic processes that molds exhibit is a signifi-
cant concentration of chitin in their cell wall, up to 15 %
of dry matter [186, 187]. This polysaccharide protects
directly the plasma membrane, which is very susceptible
to the oxidative activity of ROS. A layer of glucans, thin-
ner than in yeasts, covers a relatively thick chitin layer.
The glucans are quite resistant to oxidative damages,
even though they are slightly more susceptible than chi-
tin. The main compound of the glucans in mold cell wall
is β-1,3-glucan, along with a much branched α-1,3-glu-
can, not present in Saccharomycetaceae. The external
layer of the molds cell wall consists of galactoproteins,
protein-sugar compounds that constitute around 45 % of
cell wall dry matter and exhibit less resistance to oxida-
tive injuries than chitin and glucans [186, 187] (Fig. 7).

Conclusions
Nanotechnology is a relatively young discipline of sci-
ence. Its rapid development in recent years opens up
new opportunities for many areas of human activity. Nu-
merous fields of science, including IT, mechanical engin-
eering, medicine, and many others, are already profiting
from its achievements. Nanotechnology may largely con-
tribute towards the fight against many pathogens, thus it
may be successfully applied in such areas as food hy-
giene or public health protection. Infectious agents pose
a threat to human health, therefore, an effective disinfec-
tion of health-care devices and surfaces appears vital for
preventing the pathogens to disseminate. A reduction of
infectious agent transmission in the public space can be
achieved thanks to the photocatalytic properties of self-
disinfecting and self-cleaning surfaces. Their crucial
compounds are oxides of some metals, such as TiO2 and
ZnO, which, after they have been powdered to NPs, ex-
hibit strong virucidal, bactericidal, and fungicidal proper-
ties. The underlying factor hereto is photocatalytic
processes induced by the UV radiation. Therefore, metal
oxides coatings can become a new, powerful tool in the
fight against infectious diseases. The so far commonly
applied conventional chemical and pharmaceutical com-
pounds do not provide for such a broad range of appli-
cation. Nanomaterials, even though a number of them
are already in use, are still not sufficiently examined in
respect of their entire spectrum of properties, including
possible negative side-effects on human health. Thus,
the studies on innovative solutions in nanotechnology
must continue. As many say, the twenty-first century
fight against pathogens is going to be led primarily not
by microbiologists but by nanotechnology engineers.
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